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There are a number of problems arising when studying the properties of materials, which 
require for their solution the inversion of a Fredholm first-kind integral equation. Examples 
include the determination of the distribution of adsorption energies on the surface of a solid 
and the evaluation of the distribution of pore radii of a solid from diffusion data. Such 
equations are, in practice, notoriously difficult to solve. This paper describes a general 
methodology for solving equations of this type. The method combines the ideas of 
regularization with a quadratic programming algorithm for minimizing quadratic expressions 
subject to non-negativity constraints. The condition of non-negativity is essential if we are to 
recover distribution functions for physical attributes of a solid. The method proposed is tested 
on simulated data for which the true solution to the equation is already known and on real 
data arising in each of the two situations described above. The method is shown to perform 
well in recovering the true solution for the simulated data and to produce results in the real 
data situations that are consistent with the data observed and with observations of related 
physical quantities. 

1. I n t r o d u c t i o n  
A statistical approach is presented to the solution of 
Fredholm first kind integral equations of the form 

g ( x )  = f ] K ( x , y ) f ( y ) d y  c<<.x<_d (1) 

The function K ( x ,  y)  is known, as are the constants 
a, b, c and d and it is our aim to determine the un- 
known function f o n  the interval [a, b] from a number 
of observations on the function g. This type of prob- 
lem occurs quite frequently in all branches of science 
and our aim is to present an approach that is entirely 
general and applicable in a large number of situations. 
Our  particular interest, however, is the solution of two 
specific problems arising in the material sciences. In 
the first, the aim is to use adsorption data to determine 
the distribution of adsorption energies on the surface 
of a solid and in the second, diffusion data are used to 
evaluate the distribution of the pore radii of a solid. 
Both problems will be considered in some detail in 
Sections 3 and 4, but first it is necessary to make some 
general comments about  the nature of such problems 
and establish a general methodology. 

Returning to Equation 1, if the function g were 
known exactly it might be possible to invert the integ- 
ral equation analytically and find an exact form for f. 
In practice, however, g is unknown. We have, instead, 
a number of observations on g at different values of 
the variable x, each observation having a random 
error component. We therefore aim to determine f 
from a finite number of measurements 9~, i =  
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1 , . . . ,  n, where 

gi = g(x~) + ~i = K ( x i ,  y ) f ( y ) d y  + a i 

c <_xi <_d, i = 1, .  . . , n  (2) 

and the ei, i =  1 . . . . .  n, are independent random 
errors whose means are all zero and whose variances 
we shall denote cy~, i = 1 . . . .  , n, respectively. In gen- 
eral, solving the n equations given by Equation 2 to 
determine the solution f is not a well-posed problem. 
There may be no solution f to fit the data or altern- 
atively a solution may exist, but it may only be one of 
an infinite number of possibilities all equally valid but 
possibly very different. Moreover the problem is un- 
stable, in the sense that small perturbations in g (due, 
for example, to random errors) may be magnified into 
very significant changes in the recovered solution 
function f 

One way of overcoming these difficulties is to use a 
method called regularization. Essentially the method 
of regularization consists of replacing the original 
problem by a stable minimization problem incorpora- 
ting some positive parameter, ~. The aim is to restrict 
the field of acceptable functions f, by enforcing some 
additional property of the solution, that of smooth- 
ness. By doing so we are able to find both a unique 
solution to the problem and one that is stable under 
small perturbations in our observations. The assump- 
tion of smoothness is, for the most part, not an un- 
reasonable one, particularly in situations where the 
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functions f we seek are density functions. Moreover, 
we are able to adjust the degree of smoothness we 
require o f f  by adjusting the smoothing parameter  ~. 

Using the method of regularization, we define our 
solution function f to be that which minimizes 

[ 12 R = f ~ g ~ -  K ( x ~ , y ) f ( y ) d y  
i = l  

+ ~ ( H f ) ( y ) d y  (3) 

The first term is the sum of squared errors and meas- 
ures the closeness ofSbK(x i ,  y ) f ( y ) d y  to the data 9~, i 
= 1 , . . . , n .  The second term, for an appropriate 

choice of H, usually a function of the second or third 
derivatives of f, is known as the smoothing term and 
measures the degree of smoothness of f The positive 
parameter  ~ provides a means.of trade-offbetween the 
degree of smoothness and the degree of consistency 
with the data. If ~ is chosen to be small then more 
emphasis is placed on the function estimate f p r o v i d -  
ing a good fit to the data, than it being smooth. On the 
other hand, if ~ is chosen to be large, then more 
importance will be placed on attaining a smooth 
solution than one which closely reproduces the data. 

The introduction of such smoothness criteria can 
transform an unstable problem into one that is stable. 
In doing so, however, we must be aware that we 
introduce a number  of further questions. For example, 
how should we define smoothness, what function is an 
appropriate choice of H? Is the assumption of 
smoothness justified and if so, what size smoothing 
parameter  ~ should be used to produce a smooth 
solution that is still consistent with the data? Further- 
more, in the two problems that we shall be consider- 
ing, the functions f that we aim to recover are essen- 
tially probability density functions. We must therefore 
constrain our estimate of the function f to be non- 
negative. We therefore seek that function f which 
minimizes Equation 3 subject to the constraint that 

f~>0.  
In Section 2 we present a general methodology for 

dealing with constrained minimization problems of 
this kind. In particular we aim to offer an insight into 
the choice of an appropriate smoothing functional H. 
Section 2 will also include a discussion of previous 
research in this area. Regularization has found wide- 
spread acceptance in the materials science literature 
for handling integral equations of this kind. Merz [1], 
Britten et al. [2] and McEnaney et al. [3] used regu- 
larization as a means of determining adsorption en- 
ergy distributions from adsorption isotherms, while 
Brown and Travis [4] and Mays and McEnaney I-5] 
endorsed regularization as a means of estimating pore 
size distributions from diffusion data. Where the 
methods of these authors and the method recommen- 
ded in this paper differs is in the choice of smoothing 
functional H and smoothing parameter  ~ and in the 
technique employed to enforce the positivity con- 
straints. 

In Section 3 we shall focus on the problem of 
estimating adsorption energy distributions from 
adsorption isotherms. Particular attention will be dir- 

391 2 

ected towards finding a method of choosing the 
smoothing parameter  ~. This section builds very much 
on the work of McEnaney et al. [-3] and will be 
concluded with the results obtained by applying our 
methodology to the real data set considered in [-3] 
corresponding to the adsorption of argon at 77 K on a 
polyvinylidene chloride-based carbon at different rel- 
ative pressures. 

In Section 4 we shall consider the second of our two 
problems, that of determining pore size distributions 
from diffusion data. Owing to the nature of the kernel 
function, this problem is particularly difficult to solve 
and as such we need to recognize that any solution we 
find may owe more to our subjective choice of 
smoothing criteria than to the data. The section is 
concluded by considering a second real data set, 
namely that given in [5] for the diffusion rate of 
helium through graphite at a number of different 
pressures. 

2. A general methodology 
A general methodology is presented here for finding 
the required solution function fg iven  observations on 
the function 9- The method is compared with those 
adopted by previous researchers in the field, and the 
differences and similarities between the techniques 
discussed. 

We recall that our aim is to find that f which 
satisfies the n equations in Equation 2 given the obser- 
vations gi, i =  1 . . . . .  n. (Throughout the paper the 
convention will be adopted that vectors and matrices 
will be printed in bold.) We begin by discretizing the 
integral operator so that the n equations in Equation 2 
can be expressed 

gi = ~ K(x i ,  y j ) f ( y j )a j  + ~ i = 1 . . . . .  n 
j = l  

(4) 

where the 6j are the weights of the quadrature scheme 
used to approximate the integral and the yj are equally 
spaced on the interval (a, b) with Yo = a and y,,+ ~ = b. 
Writing the equations in matrix form 

g = Kf + e (5) 

where the quantity K is an n x m matrix operator 
whose ijth element is given by K(x~, yj)Sj and f is the 
m x 1 vector whose j th  element corresponds to f (y j ) .  
The n x 1 vector g is the known vector of observations 
and the n x 1 vector ~ is the vector of errors, here 
assumed to be a multivariate normal random variable 
with zero mean and variance given by var(e) 
= ~e w 1, where cye is unknown and W is a known 

diagonal matrix (often the identity matrix I). 
Using regularization we choose our solution to be 

that f ~> 0 which minimizes the functional 

R = E + aS  (6) 

where E is defined to be the weighted sum of squared 
errors 

E = (g Kf)TW(g Kf) (7) 



Weighting the sum of squared errors by the matrix W 
ensures that we do not allow the error term to b e  
swamped by the presence of data points with unnatu- 
rally large variability. 

The second term, aS, in Equation 6 is the smoothing 
term consisting of a discrete matrix approximation to 
our chosen smoothing function. The choice of 
smoothing function is a subjective one which will 
depend not on the data but on our subjective assess- 
ment of the shape of the function f we are aiming to 
recover. What then are the properties we would like 
our solution to have and what smoothing function 
should we employ to induce these properties? A reas- 
onable assumption to make is that our recovered 
solution should not exhibit erratic fluctuations or 
"wiggliness". A sensible smoothing function to choose 
in this case is ~ (f,,)2, the integral of the squared 
second derivatives. This function measures the change 
in gradient of the function f Clearly the more "wiggly" 
a function, the more its gradient will be changing and 
the larger will be the integral of squared second deriv- 
atives. Thus taking ~ (f,,)2 as the smoothing function 
has the effect of penalising those functions whose 
gradients are constantly changing - the wiggly func- 
tions. 

We approximate this smoothing function in the 
natural way by taking finite second differences. De- 
noting the j th  value of vector f, namely f (yj) ,  by fj, we 
approximate ~ (f")2 dy by 

(6Y) 41  { ,,+l(j=~o fj+l - 2fj + fj-1)2~Y } (8) 
where 6y is the width of the interval [yj 1, Yj], as- 
sumed equal for all j, and we assume f_ 1 = fo = 0 and 
fro+ 1 = f,,+2 = 0. This last assumption has the effect of 
smoothing the function f to zero at the ends of the 
interval (a, b). This may not always be appropriate, for 
example, if we anticipate that our function f i s  likely to 
exhibit asymptotic behaviour at one of the endpoints. 
However, we have adopted this approximation of the 
smoothing function to be consistent with the method 
of Reference 3, which constrained the function f t o  be 
tied to zero at the ends of the interval on which it was 
defined. This will enable us more easily to make 
comparisons between the results obtained by our 
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Figure 1 Graph of a smooth function f ( . . .  ) plotted against a 
"wiggly" function h ( - - )  with the same integrated square value. 

method and those obtained in Reference 3 on the same 
set of data. 

Using matrix notation, Equation 8 can be written as 
fXQf where Q is the symmetric m x m matrix obtained 
by expanding Equation 8 and defining Qu to be the 
coefficient of fifj, i = 1 . . . .  , m,j = 1 , . . . ,  m, namely 

1 
O - (~y)3  

6 - 4  1 0 ... 0 0 0 
4 6 - 4  1 -.. 0 0 0 
l - 4  6 - 4  -.- 0 0 0 

0 1 - 4  6 .-. 0 0 0 

0 0 0 0 ..- 6 - 4  1 
0 0 0 0 .. - 4  6 - 4  
0 0 0 0 ... 1 - 4  6 

(9) 

An alternative smoothing function and the one used 
by Britten et al. [2] and McEnaney et al. [3] is f f2 .  
The matrix approximation to this is Q = I, the identi- 
ty matrix. Careful consideration of this choice how- 
ever, reveals that ~f2 does not penalize "wiggliness" in 
the final solution. For  example, consider the functions 
f ( y )  = (1 + q2)U2 siny and h(y) = siny + q cos (2px 

+ ~/2), as depicted by the dotted and solid curves in 
Fig. 1, respectively (for constants q = 0.03 and p 
= 15.0). The function h is wiggly and f i s  smooth and 

yet it is easy to show that f~f2 J0 = ~ h  2. The effect of 
choosing such a smoothing function is not to penalize 
wiggly functions but to penalize large values of the 
function f a n d  particularly, as ~ increases, to flatten f 
down to the zero axis. 

With this in mind, we choose Q to be the approx- 
imation to the integral of the squared second derivat- 
ives, as defined above. Using Equations 6 and 7 

R = (g - K f ) ~ W ( g -  Kf) + ~ f T Q f  (10) 

Expanding the brackets and neglecting terms constant 
in f the problem becomes one of minimizing 

R* = - 2 g T W K f + f ~ ( K T W K + ~ Q ) f  (11) 

subject to the non-negativity constraint 

fj_>0 j = 1 . . . . .  m (12) 

This is a constrained minimisation of a quadratic 
function in f, with the added difficulty that we must 
choose a value for our smoothing parameter ~. The 
choice of smoothing parameter will be considered in 
the next section. Here we observe that the problem 
defined in Equation 1 l may be ideally solved using the 
quadratic programming algorithm, an optimization 
algorithm designed to minimize quadratic functions 
subject to linear and positivity constraints. The al- 
gorithm used is due to Wolfe [6] and makes use of the 
Simplex method widely used in linear programming 
problems. It has been implemented in Fortran 77 on a 
Sun Workstation. The quadratic programming al- 
gorithm will yield a unique solution for the global 
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minimum whenever KTWK + ~Q is positive definite. 
(A matrix C is said to be positive definite if xTCx > 0 
for all non-zero vectors x.) If KTWK + ~Q is only 
positive semidefinite then the solution need not be 
unique. 

Before moving on to consider the choice of smooth- 
ing parameter, ~, it is worthwhile to look at the way in 
which other authors have solved the minimization 
problem given in Equation 11. Merz [1] tackled the 
problem by ignoring the non-negativity constraints. 
The smoothing parameter ~ was selected using a 
procedure called generalized cross-validation as out- 
lined by Wahba [7]. It is a well-documented proced- 
ure for choosing the smoothing parameter, when there 
are no constraints on f. We shall consider its merits in 
the constrained case in Section 3. Having selected the 
parameter, Merz [1] chooses that f which minimises 
Equation 11 for this value of ~. Ignoring the con- 
straints, the required fis simply that which satisfies the 
linear simultaneous equations 

(KTWK + ~Q)f  = KTWg (13) 

A simulation study is carried out and gives sample 
solutions f for three different ~ values, one of which 
corresponds to the generalized cross-validation estim- 
ate of ~. The solution obtained for this ~, while being a 
closer approximation to the true function f t h a n  those 
obtained using other choices of ~, nevertheless is prob- 
lematical because it takes negative values at some 
points in its domain and it is not clear how to interpret 
such values. The author makes it clear that a method 
incorporating the constraints would be an improve- 
ment, were such a method to exist. The ideas of 
generalized cross-validation are useful ones and will 
be considered later. 

Britten et al. [-2] present an approach to the min- 
imisation of Equation 10 which incorporates the non- 
negativity constraints and a method for choosing the 
smoothing parameter. The method chosen to deter- 
mine f is an iterative procedure proposed by Butler et 
al. [8]. Using an optimization technique called gra- 
dient projection, it has the disadvantage that conver- 
gence to a solution may be slow and hampered by 
round-off errors. The choice of smoothing parameter 
is a technique due to Reference 8 which is based on the 
level of error in the data. In simulations it was found 
that the estimate of ~ thus obtained brought about 
systematic oversmoothing in all cases. The method 
also requires that the smoothing functional is of the 
form f f2 ,  which as we saw earlier may not be the best 
function to choose for our purposes. 

The final paper we shall consider is McEnaney et al. 
[3] which addressed the adsorption energy problem. 
Here the smoothing parameter is chosen to be the 
smallest value of ~ for which the non-negativity con- 
straints are satisfied and for which the ends of the 
solution are tied to zero, that is 

f j > 0  j = 2 . . . . .  m - 1  (14a) 

fl = f m  = 0 (14b) 

The smoothing procedure is defined as follows. The 
upper value of the domain of the solution function f, 
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here the value of Ym at which fm is to be evaluated, is 
fixed at an initial high value. The constraints on the 
solution vector f, as given in Equations 14a and b, are 
relaxed and f found by solving the linear simultaneous 
equations in Equation 13 for f2, fa . . . .  , fro. With the 
value o f f  1 (the function fevaluated at y = 0) fixed at 0, 
it is found that for a given smoothing parameter 
there is a maximum value of Ym for which the calcu- 
lated solution f satisfies the constraints in Equations 
14a and b. It is also found that there is a minimum 
for which a sufficiently large Ym can be determined. 
The optimal smoothing parameter ~ is  therefore said 
to be that which supplies the least smoothed solution 
with the widest range. The procedure is somewhat ad 
hoc and may involve a considerable amount of com- 
putation as many values of ~ may need to be tried 
before a suitable f is found. It is also questionable 
whether this method will be able to produce a function 
which is not unimodal, particularly a bimodal dis- 
tribution with a small weight at the far end of the 
range, which may well be lost through this procedure. 
We shall return to this paper in the next section when 
we shall compare our results with those of McEnaney 
et al. [-3] for their adsorption data. 

3. The adsorption problem 
3.1. Description of the problem 
The aim is to determine the heterogeneity of a solid by 
a consideration of adsorption energies. Background 
information to this problem and a detailed review of 
recent progress in this area may be found in Jaroniec 
and Brauer [-9]. The development that follows is based 
on that appearing in Reference 3. We begin by devel- 
oping a mathematical model for the physical situation. 
It will be assumed, in common with much of the 
research into adsorption on heterogeneous solids, that 
the surface of the solid consists of areas of uniform 
adsorption energy y, each of which fills according to a 
local isotherm K(x ,y) .  The isotherm K ( x , y )  is a 
function relating the fraction of sites covered at equi- 
librium, K, to pressure x and adsorption energy y. 
Assuming the size of the patches to be small relative to 
the total area of adsorption, it can be assumed that the 
density of adsorption energies h(y), a < y < b, is con- 
tinuous and the total adsorption isotherm T(x)  at 
pressure x is given by 

T(x)  = f ]  K(x,  y )h(y)dy  (15) 

a Fredholm first-kind integral equation. This expres- 
sion is referred to in the literature as the generalized 
adsorption isotherm. The function h is a density and 
therefore satisfies 

and 

h(y) > 0 a < y < b (16a) 

l h ( y ) d y  1 (16b) 

There are a number of possible functions currently 
in use for the local adsorption isotherm K(x,  y). A full 



discussion of the advantages and limitations of the 
different functions may be found in Reference 9. The 
question of which function is most appropriate will 
not be addressed here. It suffices to say that the 
methodology used in this paper may be applied to any 
chosen kernel function K(x ,  y). Here K(x ,  y) will be 
taken to be the Langmuir isotherm, namely 

bx 
K ( x ,  y)  - (17) 

1 + b x  

where the factor b is given by 

b = b o e x p ( y / B )  (18) 

The values of the constants b o and B are taken to be 
those given in Reference 3 for adsorption of argon on 
microporous carbons, namely b 0 = 0.000 006 55 and B 
= 640.178. 

In practice, observations are riot made on the total 
isotherm T but on the specific amount adsorbed at 
pressure x. Denoting this function by g, g is related to 
T by the expression 

g = cT  (19) 

where c is an unknown constant corresponding to the 
specific amount  adsorbed in the total adsorption 
space. W r i t i n g f ( y ) =  ch(y), Equation 15 becomes 

g(x)  = f f  K (x ,  y ) f ( y ) d y  (20) 

Given observations on g subject to measurement or 
experimental error, the aim is to determine the non- 
negative function f a n d  hence to evaluate the density h 
and the constant c using 

f ( y ) d y  = c h ( y )dy  = c (21) 

and 

f ( Y )  
h(y) - S f ( y , ) d y  , (22) 

The function f is determined using the general meth- 
odology of Section 2, that is by discretizing Equation 
20, choosing an appropriate smoothing matrix Q (here 
we use that given in Section 2) and using quadratic 
programming to minimize the expression in Equation 
11 subject to the non-negativity constraints. The only 
problem is that of choosing a suitable value for the 
smoothing parameter ~ in Equation 11. This problem 
is addressed in the next section. 

3.2. Simulation study to investigate the choice 
of smoothing parameter 

3.2. I. Me thod  o f  s imulat ion 
The aim is to choose a level of smoothing which will 
produce a smooth solution while remaining true to the 
data. In order to investigate this problem a simulation 
study was conducted. The true distribution of adsorp- 
tion energies f *  say, was chosen to be proportional to 
a gamma density with parameters 35 and 0.005. The 
value of the lower energy level Ymin was taken to be 
three standard deviations below the mean and the 

upper energy level Ymax was taken to be four standard 
deviations above the mean. This particular f *  was 
chosen for its similarity to the recovered site energy 
distributions given in Reference 3. The area under the 
curve f * ,  corresponding to the specific amount ad- 
sorbed in the total adsorption space was approxim- 
ately 293 units. 

The values of the xl, i = 1 . . . . .  n were taken to be 
the 25 relative pressures used in Reference 3, where 
relative pressure is defined to be the actual pressure 
divided by the saturated vapour pressure of super- 
cooled liquid argon at 77 K. The number of points in 
the quadrature m was chosen to be 49, large enough 
for the vector f to be a reasonable approximation to 
the function f while not so large that the problem 
becomes unwieldy given the limited amount of data. 
We notice that m > n and hence that the matrix KTK 
is only semi-definite with, in this case, at most 25 non- 
zero eigenvalues. The value of the local isotherm 
K(xi ,  y~) at relative pressure x~, i = 1 . . . . .  25 and site 
energy Ys,J = 1 . . . .  , m is given by 

K ( x  i, yj) = xi (23) 
A e x p ( -  y j /B)  + xi 

where A = 5280.28 and B = 640.178 using the values 
of the constants given in Reference 3. The data g~, 
i = 1 . . . . .  n was generated using the expression 

g, = ~ K(x~, y~)f*(yj)~j  + ~ (24) 
j = l  

where K(x~, ys) is as defined above and the yj are 
equally spaced on the interval (Ymi,, Yma,) with Ymin 
taken to be Y0 and Ymax taken to be y,,+t. Each 6s 
corresponds to the length of the interval [ys_l ,  Ys] 
assumed equal for all j, namely (Ymax -- Ymi~,)/( m + 1), 
andf*(ys)  is the value of our chosen energy distribu- 
tion f *  evaluated at energy ys. The errors ~ are 
independent normal random variables with mean zero 
and common variance of 25.0 for all i = 1 , . . . ,  n (i.e. 
or z =  25.0 and W is the identity matrix). They are 
generated using marsaglia's polar method [10] and a 
congruential pseudo-random number generator [11]. 

Twenty different data sets were simulated using this 
model. One such data set is displayed in Fig. 2. For 
each of the twenty data sets generated we solved the 
constrained minimization problem in Equation 11 to 
find the vector f, our discrete approximation to the 
unknown energy distribution f, using the methodology 
given in Section 2 and a range of different values of the 
smoothing parameter ~. 

3.2.2. Results: some ini t ial  observations 
For each of the twenty data sets a similar pattern of 
behaviour emerged as the smoothing parameter 
varied. A single data set, that given by the plotted 
points in Fig. 2, will be used here as an example. The 
numerical results for a number of different values of 
the smoothing parameter c~ are given in Table I. The 
second column refers to the number of pivoting opera- 
tions required in the quadratic programming proced- 
ure before a solution was reached. The third column 
gives an estimate of the specific amount adsorbed in 
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Figure 2 Plot of simulated data values corresponding to the specific 
amount  adsorbed at 25 different relative pressures. (Q)  Generated 
data. 

T A B L E  I Results for simulated data set 1 

ct Number  of Specific amount  Value of R* 
pivots absorbed (4 sO (6 sf) 

0.001 75 277.3 --25 562.6 
0.1 75 277.3 --25 562.6 
103 73 277.2 --25 562.6 
105 76 277.3 --25 562.6 
108 87 280.2 --25 562.4 
109 87 284.5 --25 562.2 
10 l~ 87 291.6 --25 562.0 
10 al 77 302.4 --25 561.2 
1011 71 311.4 --25 556.8 
10 ~3 81 310.5 - 2 5  522.7 
l0 z~ 84 287.9 - 2 5  292.8 
10 t5 87 252.3 - 2 4  156.2 

sf: significant figures 

the total adsorption space, the true value of which we 
know in this case to be 293 units. The fourth column is 
the value of the function R* (as given in Equation 11) 
that we are minimizing. The recovered solution vec- 
tors f for four different values of ~ are plotted in Fig. 3. 
The solid line in each case depicts the original f *  
plotted on 49 points and the dotted line is a line drawn 
through the 49 points of the vector estimate f re- 
covered by quadratic programming. 

If we consider the values of R* in Table I we notice 
that R* remains constant at a value of - 2 5  562.6 for 
all values o f~  less than 10 8. Between ~ = 10 8 and 10 ~3 
the value of R* changes relatively slowly. Thereafter 

R* begins to change quite dramatically as ~ increases. 
This can be seen most clearly by means of a graph, in 
which we plot R* against logxo~. See Fig. 4. 

If we consider now the solution functions f ob- 
tained, we see that the fs corresponding to the as in 
the region of constant R* are wiggly and under- 
smoothed (see in particular Fig. 3a corresponding to 
an ~ of 105). Those fs corresponding to the region of 
steeply changing R*, for example the f plotted in 
Fig. 3d corresponding to an ~ of 1015, are consider- 
ably oversmoothed. It is in the region of slowly chang- 
ing R* that it appears the most sensible values o f~  are 
obtained. Fig. 5 depicts the recovered solutions f for 
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successive values of a in this regmn._Returning to 
Fig. 3b and c, depicting the solutions f for a = 10 l~ 
and 1012 , respectively, it is clear that both the solu- 
tions corresponding to <z in the middle region yield 
good reconstructions of the original gamma function. 
An a of 109,  o n  the other hand, would give an f that is 
slightly undersmoothed and an a of 1014 would give a 
solution that is tending to be oversmoothed. 

In practice, of course, the true function f *  is un- 
known. It might therefore be more useful to consider 
the values of fg that we might predict using our re- 
covered solution f and see if these are consistent with 
the actual data g observed. We construct our predic- 
ted data using the expression 

= 2 K(x,, y,)tA; (25) 
j = l  

The graphs in Fig. 6 each depict a dotted line drawn 
through the predicted data ~ plotted on 25 points and 
the original 25 observations. The predicted data 
depicted in Fig. 6a corresponds to the solution f depic- 
ted in Fig. 3a, the predicted data in Fig. 6b to the 
solution in Fig. 3b and so on. We can quantify the 
difference between the predicted ~ and the original 
data g using the following measure, which we shall call 

summed predicted error, namely 

SeE = s (g, - I~i) 2 (26) 
i---1 

For this example, the summed predicted error values 
for a number of different as are given in Table II. As 
we would expect, the summed predicted error in- 
creases with (z, because as a increases we are giving 
more importance to smoothness and less importance 
to the data. Moreover the increase in the SPE is 
relatively slow until we reach smoothing parameters 
of about 1013 and 10 TM . At this point the errors 
increase much more markedly. This corresponds to 
the level of 0~ at which R* begins to increase signific- 
antly and is indicative of oversmoothing. This effect is 
perhaps most visible when we consider the graphs of 
the predicted data in Fig. 6. From Fig. 6a, b and c it is 
clear that the three functions f in Fig. 3a, b and c, 
obtained by quadratic programming from three very 
different values of a, all reproduce the original data 
very closely indeed. This is a very graphic illustration 
of the instability in the problem - that very different 
site energy distributions f can yield almost identical 
sets of adsorption data. In the final figure, Fig. 6d, we 
see the effect on the predicted data of oversmoothing 
the site energy distribution. Both the value of the 
summed predicted error as given in Table II and the 
curve itself indicate that by increasing a too much we 
are producing a solution that is not consistent with the 
data and hence not to be recommended. 

It is clear from our investigations that the use of 
such simple methods as the consideration of the shape 
of the solution curves, and quantities such as the value 
R* and the summed predicted error, are able to give 
us an indication of the level of smoothing parameter 
that might be appropriate in a given situation, to yield 
solutions that are both smooth and consistent with the 
data. In the section that follows we shall consider how 
we might adapt the ideas of cross-validation to pro- 
vide a further indication of the level of smoothing. 
However, before proceeding it might be useful to see 
how we might apply the criteria outlined above in 
choosing a solution for a second simulated data set. 

One of the remaining nineteen data sets generated 
in Section 3.2.1 was selected arbitrarily and solution 
vectors f obtained by quadratic programming for a 
number of different ~ values. The numerical results are 

T A B L E  II Summed predicted error values for simulated data 
set 1 

:t Summed predicted error 
(6 sf) 

lO s 374.984 
108 378.089 
109 380.936 
101~ 386.103 
1021 392.311 
1012 413.702 
1083 484.409 
10 T M  2143,45 
1015 8582.48 
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T A B L E  III  Results for simulated data set 2 

cz Number of Specific amount Value of R* Summed predicted 
pivots adsorbed (4 sl) (6 sf) error (6 sf) 

108 107 455.2 - 2 5  125.9 472.212 
109 87 384.8 - 2 5  125.3 481.943 
101~ 77 327.8 -25124.8 499.803 
10 la 75 316.8 - 2 5  124.2 506.092 
1012 73 317.3 - 2 5  120.4 510.624 
1013 79 311.2 -25085.6 577.252 
10 TM 84 286.4 -24853.2 1715.08 

contained in Table III. A similar range of ~ values 
appear to be appropriate here as in the previous 
example. An c~ of 1013 gives unacceptably high predic- 
ted errors suggesting oversmoothing, while as of 109 

and 10 l~ yield curves which are still quite wiggly. An cz 
of 1011 o r  1012 seems to yield a smooth solution 
consistent with the data. If we compare the solution 
obtained for an ~z of 1012 with the true gamma func- 
tion f *  (Fig. 7) we can see that our criteria has 
produced a very good approximation to the original 
function. 

3.2.3.  U s i n g  the ideas o f  gene ra l i zed  
c ross-  va l i da t i on  

One widely recognized technique for finding an ap- 
propriate value for the smoothing parameter  is that of 
cross-validation [7]. The principle underlying cross- 
validation is to leave out the data points one at a time 
and then to choose that value of c~ which yields 
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solutions which best predict the missing data points 
given the remainder. Defining f~) to be that solution to 
the constrained minimization problem obtained by 



using smoothing parameter cz and omitting data point 
i we choose as our parameter ~, that which minimizes 
the function 

1 " 
XVSC(~) = n ~ l  ((Kf~))i - g,)2 (27) 

Essentially the procedure is seeking that ~ yielding 
solutions f~) . . . . .  f~"), which when premultiplied by 
K best predict the data gz . . . . .  g,. 

In special cases the expression given in Equation 27 
has a very much simpler computational form. In par- 
ticular, if we were minimizing the regularization ex- 
pression in Equation 11 without requiring non-neg- 
ativity constraints on the f, the solution fa would be 
linear in the observations and found by solving the 
linear simultaneous equations 

( K T W K  + aQ){= = K T W g  (28) 

Defining the predicted vector of observations ~ ,  given 
solution f~, by ~ = Kf~, we can then find a matrix 
A(~) with the property that 

~= = A(a)g (29) 

namely 

A(a) = K(KTWK + a Q ) - I K T W  (30) 

With this definition a simple computational form for 
the cross-validation score and for a rotation invariant 
modification, the generalized cross-validation score, 
may be obtained. The generalized cross-validation 
score for the simple unconstrained case is given by 

1/nRSS(~) 
GXVSC(a) = {1 - 1 /nTr[A(oO]}  2 (31) 

where RSS(a) is the residual sums of squares given by 

R S S ( a )  = (g - K L ) T W ( g  --  K L )  (32) 

and Tr [A(a) ]  is the trace of the matrix A(a) as 
defined in Equation 30. The a for which the function 
GXVSC(a) is minimized is known as the generalized 
cross-validation estimate of ~. 

Unfortunately constraining the vector f~ to be non- 
negative when minimising Equation 11 means that the 
solution f~ is no longer linear in the observations g and 
the score function no longer has the simple com- 
putational form given in Equation 31. Wahba [121 
derives a form for the generalized cross-validation 
score when there is the problem of constraints to 
consider. However, its evaluation demands con- 
siderable computation. An approximation to that 
score function is therefore defined in Reference 12, 
which we shall denote V(a) given by 

1/nRSS(~) 
v ( a )  = ~ (33) 

Here RSS(a) is the residual sums of squares given by 

RSS(a) = (g - Kf~)TW(g -- KL) (34) 

where f~ is the solution to the constrained minim- 
ization problem in Equation 11. The partial derivative 
term in the denominator seeks to quantify the change 

in the predicted value of the ith data point g~,i given a 
small change in the value of the ith observation gl. In 
the unconstrained case when ~ is linear in the obser- 
vations g, the partial derivative c~,~.i/c~g i is simply the 
ith diagonal element of the matrix A(~) and V(~) 
reduces to the score function in Equation 31. In this 
paper we shall employ a further approximation to 
evaluate the partial derivative. If we define ~ [ g ]  to be 
the predicted vector ~ given a smoothing parameter 
and an initial set of observations g, then we approxim- 
ate the ith partial derivative by 

O~,c~,i/cOg i ~ ga, i [ g +  ~ i ]  - -  gc~,i[g] (35) 

Here the vector 6~ is an n x 1 vector with one non-zero 
element ~ in the ith position. The ~ are small positive 
real numbers of the order of 10- 5. With this approx- 
imation the score function V(a) requires a constrained 
quadratic minimisation for the evaluation of each of 
the n partial derivatives. Hence determining the score 
function is a lengthy procedure. 

In what follows we shall consider again the solu- 
tions obtained using the example data set g plotted in 
Fig. 2 and evaluate two different score functions for 
each of a number of different as. The first we shall 
denote VL(a). It is essentially that measure given in 
Equation 31 which assumes linearity and is defined 

(g  - -  K f a l T W ( g  - K?c~ ) 
v L ( ~ )  = 

( 1  - 1/nTr [K(KTWK + a Q ) - I K T W ) ]  

(36) 

The only difference between this and Equation 31 is 
that the solution vector f~ in the numerator is that 
obtained by a constrained minimization of Equation 
11 not by solving the simultaneous linear equations in 
Equation 28. The denominator is exactly as in Equa- 
tion 31 and therefore independent of the observations 
g. The second score function is the function V(a) 
defined in Equation 33 with the approximation for the 
partial derivative term given by Equation 35. Notice 
that both measures therefore have the same numer- 
ator. It is only the denominator which varies. We 
anticipate that V(a) will yield a better approximation 
to the score function derived in Reference 12 for 
constrained problems than the score function VL(~) 
and therefore be a more instructive means of finding 
an appropriate level of smoothing, despite its dis- 
advantages in terms of computational effort. 

The values of the two scores are given in Table IV 
for varying levels of oz. Observe first how the nu- 
merator corresponding to the sum of squared re- 

T A B L E  IV Values of the score functions for simulated data set 1 

1In RSS(~) VL(~Z ) V(~) 
(5 sf) (5 sf) (5 sf) 

l0 s 0.604 95 1.190 9 0.978 98 
109 0.609 49 1.066 8 0.944 77 
10 t~ 0.617 76 0.971 33 0.928 72 
1011 0.627 69 0.897 78 0.897 78 
1012 0.66191 0.869 23 0.869 23 
10 Ia 0.774 60 0.943 01 0.923 79 
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T A B L E  V Results for real adsorption data 

Number  of Specific amount  Value of R* 
pivots adsorbed (4 sO (6 sf) 

Summed predicted 
error (6 sf) 

10 v 115 3917 --1052 250 
109 88 1554 --1052 250 
1011 69 657.6 --1052 250 
1012 74 497.1 --1052 240 
1013 72 418.9 --1052230 
1014 76 363.9 --1052 190 
1015 72 324.9 --1052 100 
1016 79 303.4 --1051 860 
1017 80 294.4 --1050 180 
1018 78 281.7 --1034900 

25.6419 
26.2726 
29.4593 
32.7914 
40.2755 
62.4481 
124.852 
215.755 
281.244 
968.329 

siduals increases as c~ increases. This term is propor-  
tional to the summed predicted errors we calculated in 250- 
the previous section and reflects the fact that as 
increases we are seeking smoother solutions at the - 
expense of consistency with the data. The most im- ~ 2o0 
portant  thing to notice from the table, however, is the ,~ 
very close similarity in the values of the two score = 
functions, particularly for larger ~. This suggests that S 150 
the constraints are ceasing to be active for larger ~ and 
the solution obtained by a constrained minimization & 
approximates closely the solution that would be ob- 100- 
tained simply by solving the linear simultaneous equa- 
tions in Equation 28. The similarity in the score val- 
ues, is not just a feature of this data set but of all the 
data sets we have considered. The minimum value of 
the score function for the subset of ~ values that we 
have considered occurs at the same value of ~, namely 
0~ = l 0 1 2 ,  for both score functions VL(cz) and V(~). 
This value of the smoothing parameter  falls in the 
interval of feasible ~ values as given by the observa- 
tions in the previous section. Perhaps this should not 
surprise us. If we consider VL(~ ) more closely, it is 
clear that the denominator  increases slowly and stea- 
dily with ~. The rate of increase of the numerator,  109 
however, goes up as ~ increases yielding a unique 10'~ 

1011 
minimum for the score function. The point at which 1012 
the numerator  increases substantially with ~ corres- 1013 
ponds to the point at which R* increases substantially 1014 
and we obtain oversmoothed solutions. 

If we consider now the solution f~ corresponding to 
an ~ of 1012, that depicted by the dotted curve in 
Fig. 3c, it is clear that this solution gives a very good 
approximation to the original gamma function from 
which the data was generated and moreover produces 
a predicted data vector ~ which fits the original data 
very closely indeed (Fig. 6c). In the light of these 
results and the observed behaviour for the other simu- 
lated data sets we draw two conclusions. 

Firstly our investigations suggest that generalized 
cross-validation scores can, and do, provide useful 
information about an appropriate  level of smoothing. 
Secondly, in all the examples considered the two 
scores have been very similar and have yielded the 
same values of the smoothing parameter. In view ot 
the computational  complexity of the second score 
function V(~), it may be adequate in most cases to 
evaluate only the simpler score function VL(~) as a 
means of determining a sensible degree of smoothing. 
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Figure 8 Plot of real data values corresponding to the specific 
amount  adsorbed at 25 relative pressures. 

T A B L E  VI Values of the score functions for the real adsorption 
data 

'~ 1In RSS(ct) VL(~ ) V(~) 
(5 sf) (5 sf) (5 sf) 

1.0509 2.8716 2.5416 
1.0939 2.5735 2.4582 
1.1783 2.4125 2.3781 
1.3116 2.3711 2.3535 
1.6111 2.6091 2.6024 
2.4976 3.6732 3.6732 

3.3. Applying the quadratic programming 
algorithm to real data 

The aim in this section is to use the quadratic pro- 
gramming algorithm on the real adsorption data, 
originally used in Reference 3 to recover site energy 
distributions. The real adsorption data are plotted in 
Fig. 8 against relative pressure. The variance matrix 
W - '  for the errors in the data is assumed to be the 
identity matrix I. 

In Table V we see the numerical results of quadratic 
programming for varying values of the smoothing 
parameter  ~. Table VI gives the values of the two score 
functions for different values of ~ and Fig. 9 depicts 
the solution curves for different values of ~. Both score 
functions suggest a smoothing parameter  value of 
1012. If we consider the values of R* as given in 
Table V we can see that 1012 falls in the region of 



slowly varying R* and has a relatively small value of 
the summed predicted error, namely 32.7914. From 
Fig. 9 the solution proposed can be seen to be approx- 
imately bimodal. Bimodality is a feature of many of 
the solutions obtained using as in the region, although 
as the level of smoothing increases (see the curve 
corresponding to a = 1016) the bimodal  behaviour is 
progressively smoothed away. Fig. 10a depicts the 
solution f obtained for an 0t of 1012 and Fig. 10b 
compares the real data (plotted as points) with the 
predicted data ~ (the dotted line) obtained using this 
chosen solution. It is clear that the solution f obtained 
produces a good fit to the original data. 

Comparison of the solution in Fig. 10a with those 
given in Reference 3 for their three different methods, 
one being the regularization technique outlined in 
Section 2, reveals quite significant differences. Most 
noticeably the solutions obtained in Reference 3 are 
unimodal. The first two methods assume unimodality 
in order to find the solution, so this should come as no 
surprise, but the regularization technique does not. 
No quantitative measure is given by the authors to 
assess the goodness of fit produced by their recovered 
solutions. However, the authors observe that for all 
three methods used the results produce residuals that 
are biased, the model tending to overpredict the 
amount adsorbed at low pressures and underpredict 
that observed at high pressures. The authors suggest 
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Figure 9 Graph of the recovered solutions f for the data given in 
Fig. 8 and for four different values of the smoothing parameter, ~.: 
( ) 10 ~,  ( -  - )  10 lz, ( - -  - - - )  101r ( - - - - )  1016. 

that this might indicate a limitation in the Langmuir 
equation as the local isotherm. However, there may be 
an alternative explanation. If we return to the results 
obtained from our simulated data in Section 3.2, and 
in particular look at the predicted data corresponding 
to an ~ of 10 ~ s, as displayed in Fig. 6d, we can observe 
the same phenomena. In the simulation study it occur- 
red when the site distribution was oversmoothed. It is 
possible that the regularization technique adopted by 
McEnaney et al. [3] has given rise to an ~ which is too 
large, resulting in a degree of oversmoothing, which 
might account for the biased residuals. 

4. The pore size problem 
The aim is to establish the pore structure of a particu- 
lar type of graphite, in order to predict structure 
related properties such as strength and corrosion res- 
istance and to assess its suitability for different ap- 
plications. To do this, the gas transport properties of 
the solid are measured by exposing the graphite to two 
gases, pure helium and pure argon at varying pre- 
ssures, x. Diffusion of both gases occurs through the 
slab of graphite and by measuring the proportions of 
helium and argon coming off at each side, it is possible 
to measure the diffusion rate of each gas through the 
solid for any given pressure x. From these observa- 
tions an attempt was made to determine the pore 
structure of the solid. 

The graphite is modelled as a "bundle" of cylin- 
drical pores of varying radii, all parallel, non-inter- 
secting a n d  oriented in the direction of the diffusive 
flow. This model will enable an expression for the 
diffusion rate of the gas is be found in terms of the 
distribution of the pore radii of the solid. The depar- 
ture of the model from reality will need to be compen- 
sated for at a later stage in the calculations. The 
density of the radii of the graphite pores is denoted 
h(y), 0 < y < y m a x  where y m a x  is some large value 
chosen to exceed all possible pore radii. 

With this cylindrical pore structure model the de- 
pendence of the gas diffusion rate on the porosity of 
the solid, the gases involved, pressure and pore size y, 
can be described by 

~ YO max g(x) = K(x ,  y ) f ( y ) d y  (37) 
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Figure 10(a) Recommended recovered solution ffor the real data set given in Fig. 8, corresponding to a smoothing parameter of ~z = 101z. (b) 
Predicted data obtained from the solution in Fig. 10a ( , . , ) plotted against the original observations. 
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where the quantity 9(x) represents the diffusivity rate 
at pressure x for some specified gas G I-5]. The kernel 
function K(x, y) is a function of both pressure and 
pore radius, y 

K(x,y) = ay21n \cxy  + 

where a, b and c are known constants which depend 
on the gas and the type of graphite. For  the gas helium 
and for y measured in micrometrcs and x measured in 
kilopascals, the constants take the values a = 1.5514, 
b = 0.11253 and c = 0.036082. 

The quantity f (y)  is defined to be Nph(y)/q where 
Np is the number of pores per cubic metre, and q is 
called the tortuosity factor. In a real solid, the pores 
are neither all cylindrical nor oriented in the direction 
of the gas diffusion. For  example, pores may twist and 
turn, connect together or vary in width along the 
whole length. The tortuosity factor is designed to 
compensate for the departure of the true pore struc- 
ture from the model assumptions. It is defined to be 
the diffusion rate that would occur through a cylin- 
drical pore oriented in the direction of diffusive flow, 
divided by the actual diffusion rate that does occur 
through the real pore of the same effective radius. By 
virtue of the definition, it is impossible to determine 
the constants Np and q. However 

f:max f:max f (y)dy  - Np h(y)dy - Np (39) 
q q 

since h is a probability density function. Hence, as in 
the previous problem, it is a simple procedure to 
evaluate Np/q and the pore size density 
h(y), 0 < y < ymax, once the function f h a s  been de- 
termined. 

Before proceeding further it is worth considering 
what happens to the kernel function as pressure x 
varies. For x very small it can be shown that 

K(x, y) .,~ ay3(b - c)x (40) 

and hence using the integral Equation 37 that f ~max 
9(x) ~ a(b - c)x y 3 f ( y ) d y  (41) 

so that g(x) is approximately proportional to x. When 
pressure x is large it can be shown that 

k(x, y) ~ a In c y (42) 

and hence that 

g(x) ~ ( a l n ! )  f~ma~y2f(y)dy (43) 

Thus g(x) is a constant for x sufficiently large. Indeed 
it is proportional to the second moment of the func- 
tion f. It follows that, for sufficiently low and suffi- 
ciently high pressures x, we are unable to determine 
much about the solution f apart from its third and 
second moments, respectively. 

The nature of the kernel function makes this prob- 
lem a particularly difficult one to solve, as information 
about the unknown funct ionf is  only attainable for a 

3922 

very limited range of pressures. A further insight into 
the very difficult nature of this particular problem can 
be gained by considering the eigenvalues of the matrix 
KTK where K is the matrix approximation to the 
integral operator in Equation 37. In this problem, 
observations have been made at 23 pressures and the 
function is evaluated on 49 points as before. Hence K 
is a 23 x 49 matrix. As a result we know that the 49 
x 49 matrix KTK will have at least 26 zero eigenvalues. 

It is the remaining 23 however, that are of most 
interest. 

To calculate the eigenvalues a routine was used 
involving Householder reduction and the QL al- 
gorithm [13]. If e 1, e2, e3 . . . . .  e49 denote the 49 ei- 
genvalues in order of decreasing magnitude, the eigen- 
values are given to four significant figures by 

e 1 = 0.2115 

e 2 = 0.00003453 

e 3 = 0.000 000 024 48 

ej < 10 -9 for all otherj .  

These results indicate only too clearly the problem we 
are facing. Not  only are the 26 eigenvalues we would 
expect, zero, but 20 of the remaining eigenvalues are 
less than10 -9 and even e2 and e 3 are fairly inconse- 
quential compared to e 1. Because the 23 non-zero 
eigenvalues of KTK correspond to the squares of the 
moduli of the 23 singular values of K, this implies that 
at most three of the columns of K are effectively 
linearly independent. The quantity K is a linear oper- 
ator whose kernel or null space is approximately a 46- 
dimensional subspace of a 49-dimensional domain. 
Without introducing the added criteria of smoothness, 
an enormous number of completely different solutions 
will be able to reproduce the data. The effect of 
smoothing is to restrict our function f to some sub- 
space of the domain consisting of "smooth" functions 
and in so doing restrict the number of feasible solu- 
tions. However, it is evident that in such a situation, 
the solution will owe as much to the information in the 
smoothing matrix as to the information in the I( 
matrix, and hence recovery of solutions may well be 
poor. 
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Figure 11 Plot of real data values corresponding to the diffusivity 
rate of helium through graphite at 23 different pressures. 



It should be stressed that in the light of these 
observations any solution obtained can at best be only 
approximate. However, it will be interesting to invest- 
igate the problem nevertheless and to make com- 
parisons with the solution obtained in Reference 5. 
The real diffusion data as used in this latter paper 
takes the following form. Each data value gi, 
i = 1 . . . . .  23 corresponds to the mean of nine differ- 
ent observations at pressure xi, i - -  1 , . . . , 2 3  of the 
diffusivity rate of helium. The data are plotted in 
Fig. 11. In recovering the pore radii distribution, the 
lower limit of the pore radii, Ymi,, was taken to be zero, 
while the upper limit Ymax was taken to be 1.40 (based 
on physical considerations in the problem). The num- 
ber of points m, as stated above, was taken to be 49. 
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Figure  12 Graph  of the recovered solutions f for the data given in 
Fig. 11 and for five different values of the smoothing parameter, c~: 
( - - )  10 11, ( _ _ )  10-10 ,  ( _ _ _ _ _ )  10 -9 ,  ( _ _ _ _ )  1 0 - 8 ,  

( .... ) 10 -?. 

We use exactly the same technique to find a solution 
as we used for the adsorption problem, namely dis- 
cretizing the integral equation in Equation 37 and 
minimizing the regularization expression R*, as given 
in Equation 11, for a number of different c~ values. The 
numerical results of the quadratic programming al- 
gorithm for different c(s are given in Table VII, the 
values of the score functions in Table VIII and the 
solution vectors plotted in Fig. 12. The score functions 
suggest that an c( of 10 - 9  might be an appropriate one 
to choose. Once again we observe the similarity in the 
values of the score functions, but this time we note that 
V(~) does not have a single minimum but a number of 
local minima. The possibility of this occurring gives 
yet another reason why it is both simpler and perhaps 
more instructive to consider only the score function 
vL(~). 

If we consider the value of R* and the solution 
(Fig. 13a) in the usual way, this value of cz produces a 
smooth curve in the region of slowly varying R*. 
Evaluating the vector ~ of predicted data values given 
this solution f, we obtain the result depicted by the 
dotted line in Fig. 13b (plotted-against the real data). A 
good fit to the original data is: produced. 

It is interesting to compare this solution with the 
one obtained in Reference 5 using the method de- 
scribed in Section 2. In Reference 5 the recovered pore 
radii density (after normalization) was normal with 
mean 0.45 pm and standard deviation 0.15 pro. This 
shows a gratifying similarity to our chosen solution. 
Consideration of the value of the area under the curve 
corresponding to the constant Np/q is even more 
encouraging. Our chosen solution produced a value 
for Np/q of 35.18 mm -3 (to two decimal places). In 
Reference 5, values for Np and q are given which are 
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Figure  13(a) Recommended recovered solution f for the real data set given in Fig. 11, corresponding to a smoothing parameter of ~ = I0-9.  
(b) Predicted data obtained from the solution in ( . . . )  plotted against the original observations. 

T A B L E  VII  Results for real diffusion data 

c~ Number  of Specific amount  Value of R* Summed predicted 
pivots adsorbed (3 sO (6 sf) error (6 sf) 

10-12 59 25.1 --216.014 0.0500965 
10-11 77 27.2 --216.013 0.050 1935 
10 lo 110 33.4 --216.014 0.0503625 
10 -9 109 35.2 --216.012 0.0504680 
10 -8 108 31.9 --216.004 0.0522389 
10 - ? 128 24.3 -- 215.967 0.070 0862 
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T A B L E  V I I I  Values of the score functions for the real diffusion 
data 

1In RSS(a) VL(c~ ) V(~) 
(5 sf) (5 sf) (5 sf) 

10-12 0.002 1780 0.002 9064 0.002 6121 
10 11 0.0021824 0.0028753 0.0026188 
10 lo 0.0021897 0.002 8014 0.002 6262 
10 -9 0.0021943 0.0026738 0.0026107 
10 s 0.002 2711 0.002 7260 0.002 6396 
10 -7 0.0030458 0.0036151 0.0034517 

calculated from molecular diffusivity and permeability 
data. The values given yield a value for Np/q of 
33 ram-3, to two significant figures. Not only is our 
estimate of Np/q very close to the actual value, it is 
also an improvement on that obtained in Reference 5, 
namely a value of 27 mm-3.  

5. Conclusions 
A method is presented for the solution of Fredholm 
first kind integral equations, when the solution we are 
seeking is a density function and therefore non-neg- 
ative. Such equations occur frequently in scientific 
problems. Here we have addressed ourselves to two 
specific problems found in the material science litera- 
ture. Other problems (for example, the extraction of 
site-energy distributions from temperature pro- 
grammed desorption data I-2]) may also be tackled in 
this way. The method uses the ideas of regularization 
combined with a quadratic programming algorithm 
for minimizing quadratic expressions subject to non- 
negativity constraints. A smoothing parameter ~ in 
the regularization expression provides a means of 
"trade-off" between the degree of smoothness of our 
solution and the degree of consistency it yields with 
our observed data. 

An approximate value for the smoothing parameter 
is chosen by combining the ideas of generalized cross- 
validation with a consideration of the data predicted 
using our solution and its closeness to the original 
observations. Two approximations to the generalized 
cross-validation function are considered. The first, 
VL(~), is a modification of the cross-validation func- 
tion that would be used if the regularization expres- 
sion was to be minimized without constraints. The 
second, V(~), is an approximation to that generalized 
cross-validation function developed specifically for the 
constrained problem. In all cases investigated, the two 
functions yielded the same value of the parameter ~ for 
the subsets of ~ values considered. In view of the 

considerable computational cost involved in evalu- 
ating V(:t) for apparently no extra information, it is 
recommended that only the simpler VL(~ ) need be 
calculated. 

The method proposed is tested on both simulated 
and real data. The results on the simulated data show 
that the procedure produces solutions that are a very 
good approximation to the true solution function. 
Results obtained from the real data show that the 
technique gives rise to solutions, that while being 
smooth are nevertheless consistent with the observed 
data. Moreover in the diffusion problem, the solution 
obtained yields a value for the unknown constant 
Np/q which is consistent with that obtained by experi- 
mentation. 
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